Mixed Finite Element Approximation of Reaction Front Propagation in Porous Media
Abstract
analyzed. Optimal error estimates are proved for both semi-discrete and fully-discrete approximate schemes.
Full Text:
PDFReferences
BEAR, Jacob et VERRUIJT, Arnold. Modeling groundwater flow and pollution. Springer Science & Business Media, 1987.
WELGE, Henry J., et al. A simplified method for computing oil recovery by gas or water drive. Journal of Petroleum Technology, 1952, vol. 4, no 04, p. 91-98.
BAUMGARTNER, A. et MUTHUKUMAR, M. A trapped polymer chain in random porous media. The Journal of chemical physics, 1987, vol. 87, no 5, p. 3082-3088.
ALLALI, Karam, BELHAQ, Mohamed, et EL KAROUNI, Kamal. Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, no 4, p. 1588-1596.
ALLALI, K., DUCROT, A., TAIK, A., et al. Convective instability of reaction fronts in porous media. Mathematical Modelling of Natural Phenomena, 2007, vol. 2, no 02, p. 20-39.
AGOUZAL, A. et ALLALI, K. Numerical analysis of reaction front propagation model under Boussinesq approximation. Mathematical methods in the applied sciences, 2003, vol. 26, no 18, p. 1529-1572.
NIELD, Donald A. et BEJAN, Adrian. Convection in porous media. Springer Science & Business Media, 2006.
POLISEVSKI, Dan. The evolution Darcy-Boussinesq system (a weak maximum principle and the uniqueness). Commentationes Mathematicae Universitatis Carolinae, 1985, vol. 26, no 1, p. 181-183.
RIONERO, Salvatore. Global non-linear stability in double diffusive convection via hidden symmetries. International Journal of Non-Linear Mechanics, 2012, vol. 47, no 1, p. 61-66.
MENZINGER, M. et WOLFGANG, Re. The meaning and use of the Arrhenius activation energy. Angewandte Chemie International Edition in English, 1969, vol. 8, no 6, p. 438-444.
ZEYTOUNIAN, Radyadour Kh. Joseph Boussinesq and his approximation: a contemporary view. Comptes Rendus Mecanique, 2003, vol. 331, no 8, p. 575-586.
FORTIN, Michel et BREZZI, Franco. Mixed and hybrid finite element methods. New York: Springer-Verlag,
RAVIART, Pierre-Arnaud et THOMAS, Jean-Marie. A mixed finite element method for 2-nd order elliptic
problems. In : Mathematical aspects of finite element methods. Springer Berlin Heidelberg, 1977. p. 292-315.
BERNARDI, Christine, MADAY, Yvon, et RAPETTI, Franscesca. Discretisations variationnelles de problemes
aux limites elliptiques. Springer Science & Business Media, 2004.
CIARLET, Philippe G. The finite element method for elliptic problems. Elsevier, 1978.
MONK, Peter et MONK, Peter. Finite element methods for Maxwell’s equations. Oxford : Clarendon Press,
GRAHAM, Ivan G., SCHEICHL, Robert, et ULLMANN, Elisabeth. Mixed Finite Element analysis of
lognormal diffusion and multilevel Monte Carlo methods. arXiv preprint arXiv:1312.6047, 2013.
TEMAM, Roger. Navier-Stokes equations: theory and numerical analysis. American Mathematical Soc., 2001.
GIRAULT, Vivette et RAVIART, P.-A. Finite element approximation of the Navier-Stokes equations. Lecture
Notes in Mathematics, Berlin Springer Verlag, 1979, vol. 749.
HOLTE, JOHN M. Discrete Gronwall lemma and applications. In : MAA-NCS Meeting at the University of North Dakota. 2009.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.